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1.(i) x = —4cos3t so %=12coszt sint M1

y =12sint — 4 sin3t so %= 12cost — 12sin?t cost = 12cost (1 —sin?t) = 12cos3t

M1

d 12cos3t
So = 298" — (ot Al

dx 12 cos?t sint
Thus the equation of the normal at (—4cos3 ¢ ,12sing — 4 sin®¢ ) is

1
cotg

y— (12sing — 4 sin3 @) = — (x — —4cos® @)

M1 Alft
This simplifies to x sin @ + y cos ¢ = 12sin ¢ cos ¢ — 4 sin ¢ cos ¢ — 4 sin @ cos3 ¢
Thatis xsing +ycos¢@ = 8sin@ cos ¢ Al (6)

Alternative simplification xtan¢@ +y =8sing

d ) . d .

For x = 8cos3t, d—:= —24cos?t sint and for y =8 51n3t,d—3;= 24sin?t cost
d 24 sin?

So - ZITM Ll _ _tan¢ M1 Alft
dx —24cos“t sint

Thus the equation of the tangent to x§ + yé =4 at (8cos3¢,8 sin3¢)is
y—8sin®¢ = —tan g (x — 8 cos? @)
M1
This simplifies to
xsing +ycos@ = 8 sin® @ cos ¢ + 8sin¢ cos ¢ = 8sing cos ¢ (sin? ¢ + cos? @)
Thatis xsing +ycos¢@ = 8sin@ cos¢ asrequired. Al (4)
Alternative 1

the normal is a tangent to the second curve if it has the same gradient and the point
(8 cos® ¢, 8 sin® ¢ ) lies on the normal. M1

Gradient working as before M1A1ft

Substitution xsing +ycos@ = 8sin¢ cos® ¢ + 8 sin3 ¢ cos @ = 8sin ¢ cos ¢ (sin? ¢ +
cos? @) = 8sing cos ¢ asrequired or xtan ¢ + y = 8sin ¢ cos ¢ (sin® ¢ + cos? ¢) Al

Alternative 2

2_T1+2 —Tldy_o
3T T3V T

(\"



. . d . .

(i) x =cost+ tsint so d—’;=—smt+tcost+smt=tcost
. d . .

y =sint—t cost so d—jt'= cost —cost+tsint =tsint Ml

So Z—z =tant Al
Thus the equation of the normal at (cos¢ + @ sin ¢ , sin ¢ — @ cos @) is
y —(sin ¢ — ¢ cos ¢) = —cote(x — (cosp + @sin ¢))
M1 Alft
This simplifiesto xcos¢@ +y sin ¢ =1 Al (5)

Alternatives which can be followed through to perpendicular distance step, or alternative method #
are

xX+ytang =sece and xcotp +y =csce

X . _ e —
The distance of (0,0) from xcos¢@ +y sin ¢ =1 is «/W| 1
M1 Alft Al

Alternatively, the perpendicular to x cos ¢ + y sin ¢ = 1 through (0,0) is
ycos@ —x sin ¢ = 0 , and these two lines meet at (cos¢ , sin ¢)

M1 A1ft

which is a distance /cos? ¢ + sin2 ¢ = 1 from (0,0) . A1

So the curve to which this normal is a tangent is a circle centre (0,0) , radius 1 which is thus
x2+y2=1 M1 A1 (5)



1 —x x a a—(b-o0)x a—a 0
2. (i) < y 1 —y> <b> =(b—-(c—-a)y|= <b - b> = <0) as required. M1 AL1*
-z z 1/ c—(a—b)z c—c 0
a 0 0
As a, b and c are distinct, they cannot all be zero. If M~ exists (b) =M1 (0) = (0) which is a
c

0 0
contradiction.

1 —x x
So, M~ does not exist and thus det( y 1 —y) =0, M1
-z Zz 1

ie. 1—xyz+xyz+yz+zx+xy =0, (Sarus)
or1(1+yz) — —x(y — yz) + x(yz + z) = 0 (by co-factors) M1
which simplifies to

yz+zx+xy =-—1 Al1* (5)

(x+y+2?2=0
So x2+y?+2z2+2yz+2zx+2xy=>0 M1

andso x> +y%2+z2>2 A1* (2)

2 —x —x\ /a 2a—(b+o)x 2a —2a 0

(ii) (—y 2 —y> <b> =(2b-(c+a)y |= <2b - 2b> = (o)
-z —z 2/ 2c—(a+Db)z 2c —2c 0

B1 M1 Al

2 —x —x\ sa 0
As a, b and c are positive, they cannot all be zero. Thus as (—y 2 —y> <b> = <0> ,
-z -z 2

2 —-x —x
asin part (i), det (—y 2 —y) =0,
-z -z 2
i.e. 8 —xyz—xyz—2yz—2zx —2xy =0 , thatis M1A1

xXyz+yz+zx+xy =4 Al* (6)

x+D+DE+) =xyz+zx+xy+x+y+z+1=4+x+y+2z+1>5
M1 Al

because as a, b, and c are all positive, so are x, yand z. E1

Thus (%+ 1)(ﬂ+ 1)(%+1)>5

cta

Multiplying by (b + ¢)(c + a)(a + b) , all three factors of which are positive, gives



Ra+b+c)a+2b+c)(a+b+c)>5bB+c)c+a)(a+ b)asrequired. AL* (4)

- - b

X = 22 > 2a as a, b, and c are positive, and similarly both, y > 2 and z > 2¢
b+c a+b+c a+b+c a+b+c
M1
b b
Thus 4+x+y+z+1>4+—2 22 4 20 44 2@bt0 5
a+b+c a+b+c a+b+c a+b+c

dmMi

and thus following the argument used to obtain the previous result
Ra+b+c)la+2b+c)(a+b+c)>7(b+c)(c+ a)(a+ b) as required.

A1* (3)



3. (i)
B

1 1
2 (g1 + In-1) = > f(secx + tanx)™*1 + (secx + tanx)" 1dx
0

B
1
= Ef(secx +tanx)" ! ((secx + tanx)? + 1) dx
0

("}

B
1
= Ef(secx +tanx)" ! (sec?x + 2secxtanx + tan® x + 1) dx
0

B

= f(secx + tanx)™ 1(sec? x + sec x tan x) dx
0

M1

B

- [% (secx + tan x)n] - % ((secf +tan )™ — 1)

0

M1 A1 *A1 (5)
as required.
1 1
2 (Iny1+ In-) —In = §(1n+1 =2l + Iny)
B

1
=5 f(secx + tanx)"*t! — 2(secx + tanx)™ + (secx + tan x)™ 1dx
0

("
B

1
= Ef(secx + tanx)" ! ((secx + tanx) — 1)2dx
0
M1 A1l

((secx + tanx) — 1)2 > 0 forall x>0

secx=>1for0<x< g and hence for 0 < x < f and similarly tanx = 0 , and thus also

(secx +tanx)"" 1> 0. E1l

Therefore, % (Ipy1 +1,-1)—1,>0,A1

andso I, < % (g1 + L—1) =% ((secB +tanB)™ — 1) asrequired. M1 *A1 (7)



Alternative 1: it has already been shown that
1 B n-1 2
> (Iyyq + I—1) = fo (secx + tanx)™ !(sec® x + secx tan x) dx

B

= f secx (secx + tanx)™ dx
0

which is greater than I,, as the expression being integrated is greater than (secx + tan x)™ because
sec x > 0 over this domain.

Alternative 2:-

B
Iy — Iy = f(secx +tanx)"(secx + tanx — 1) dx
0

B

Iy—1,_4 = f(secx +tanx)" !(secx + tanx — 1) dx
0

M1 Al1A1

For 0 <x<f ,secx>1,tanx >0 so secx+tanx > 1 Elandthus I,,; — 1, >1,—1,_; Al

andso I, < % (Lyy1 + 1) = % ((secf +tanp)™ — 1) M1 *A1(7)

(ii) % Ups1 +Jn-1) = % foﬂ(secx cosf + tanx)"*1 + (secx cos B + tanx)" ldx

B

1
= Ef(secx cosff + tanx)" ! ((secx cos B + tanx)? + 1) dx

0
("}

B
1
= Zj(secx cos B + tanx)"" ! (sec? x cos? B + 2secx cos B tanx + tan® x + 1) dx
0

B
1
= Zj(secx cos B +tanx)" ! (sec? x (1 —sin? B) + 2secx cos B tanx + tan® x + 1) dx
0

B

= f(secx cos B + tanx)™! ((sec? x + secx cos f tan x) — sec? x sin? f)dx

0
M1
B

1
f(sec xcosfB +tanx)" ! (sec? x + secx cos f tanx)dx = - (secx cosp + tan x)"]
0

B

0



("

= %((1 + tan B)™ — cos™ B)

Al

B
f(secx cosff + tanx)"" 1 sec? xsin? Bdx > 0
0

by a similar argument to part (i), namely sec? x sin? f > 0 for any x, and secx cos 8 + tanx > 0

assecx>0andtanx20for0§x<[)’<§ E1l
Hence % Unse1 ) < %((1 + tan )™ — cos™ ) Al
But

B

1 1
> Uns1 +Jne1) = Jn == Ef(secxcosﬁ + tanx)" ! ((secxcosﬁ + tanx) — l)zdx >0
0

("}

as before, and thus J, < % Uns1 +Jn-1) < %((1 + tan B)™ — cos™ B) as required. *A1l (8)



4. (i)
m.a= %(a + b).a = %(1 + a.b) = mcosa where « is the non-reflex angle between a and m

m.b = %(a +b).b = %(1 + a.b) = mcos B where a is the non-reflex angle between b and m

M1 A1

Thus cosa =cosf andso a = f asfor 0 < 7 < m, thereis only one value of t for any given
value of cost. E1(3)

(i) ay.c = (a— (a.c)c).c =a.c —a.cc.c = 0 asrequired. *B1
a.c=cosa , b.c=cosf,a.b =cosb
a; =a—(a.c)c and by =b— (b.c)c
la;|? = ay,.a; = (a— (a.c)c).(a— (a.c)c) =a.a—2a.ca.c+a.ca.cc.c
=1-—2cos?a+cos?a =sin?a
M1

and so. as «a isacute, |a4| = sina as required. *Al

a;.by =(a—(a.c)c).(b— (b.c)c) =a.b—2(a.c)(b.c) + (a.c)(b.c)(c.c)

= cosf —cosacosf

M1 A1l
but also, a4.b; = sina sinf cos ¢ B1 M1
and hence,
cos@ —cosacosf
cos@p =
¢ sina sin 8
as required. *Al (8)

(iii) mq =m—(m.c)c=%(a+b)—(%(a+b).c)c:%(a1+b1) B1

m4 bisects the angle between a4 and b4 if and only if
my.aq m,. bl

sina sin
M1
Thus, multiplying through by 2 sina sin 8,
(ay + by).aysinB = (a + by). by sina

Al

(sin?a + a;.by) sin B = (sin? B + a4.by) sina



M1 A1

So
(ay.by —sinasinB)(sina —sinB) =0

Al
and thus, sina = sinf in which case @ = f as both angles are acute, *Al
or cos @ — cosa cos B = sinasin f, meaning that cos = cosa cosf + sina sinf = cos(a — )

M1 *A1(9)



5. (i) The curves meet when a + 2cos6 = 2 + cos 260

Thatis, a+ 2cosf =2+ 2cos?8 — 1 orasrequired, B1 2cos?8 —2cos@+1—a=0

The curves touch if this quadratic has coincident roots, Mlie.if 4 —8(1—a)=0=>a = % , *Al
orif cosf = +1 ,M1inwhichcases a=1Alor a=5.A1(6)

Alternatively, for the curves to touch, they must have the same gradient, so differentiating,
—2sinf = —2sin260 = —4sin6 cosH
M1
in which case, either sinf = 0 giving cos8 = +1 , M1 in whichcases a=1 Alor a=5,Alor

cosf = % in which case a = % . *A1 (6)

and thus G ,i% ) M1A1

(i) If a =% then at points where they touch, cos 6 =% sof = i%

r = a+ 2cos @ is symmetrical about the initial line which it intercepts at G ,0 ) and has a cusp at
(0 ,+cos™?! (— %) ) . It passes through G , i% ) and only exists for

—cos™t (— %) <6 <cost (— %) .

r = 2 + cos 260 is symmetrical about both the initial line, and its perpendicular. It passes through
(3,0),(3,m),and (1,%3 )

Sketch G6 (8)

(iii) If @ = 1, then the curves meet where 2cos?6 —2cosf =0, i.e. cosf = 1 at (3,0) where
they touch, and cos 8@ = 0 at (1, i% )

r =a+ 2cos@ is symmetrical about the initial line which it intercepts at (3,0 ) and has a cusp at
(O ,+cos™1 (— %) ) = (O , iz?n ) . It passes through (1 , ig ) and only exists for

Sketch G3

If a =5, then the curves meet where 2cos?8 —2cosd —4 =0,i.e.only cosd = —1at (3,m)
where they touch, as cos 8 # 2.

r=a+ 2cos 0 issymmetrical about the initial line which it interceptsat (7,0) and (3,7 ). It

also passes through (5 , i% ) .

Sketch G3 (6)



6. (i)

fy(x) = tan™? (M)

tana — x
, 1 (tana —x)tana + (xtana + 1)
fa(x) = 2 2
1+(xtana+1) (tana — x)
tana — x
M1 A1l

B tan®a + 1

" (tana —x)? + (xtana + 1)2

sec? a sec? a 1

=tan201+xz+x2tan2a+1=sec20((1+x2)=1+x2

M1 M1 *A1 (5)
as required.
Alternative
xtana + 1
x) = tan~ ! (—)
fa () tana — x
tan-1 ( x + cota )
= tan _—
1—xcota

tan(tan™! x) + tan (% —a

=tan~!
— -1 n_
1 — tan(tan—1 x) tan (2 a)

M1 Al
-1 -1 T
= tan (tan (tan x + 5~ a))
M1
=tan 'x + g — a if this is less than g Ji.e.if x <tana

or =tan‘1x—§—a if x>tana M1

1
1+x2

So f',(x) = ;—x (tan™1x) = *A1 (5)

Thus f(x) =tan"lx+c

1 T
(0)=tan"!(——) =tan " (cota) == —«
fa tana 2

fae(x) =0 when x = —cota

There is a discontinuity at x = tana , with f,(x) approaching % from below and —% from above.

As x > 4o, f,(x) > tan"(—tana) = —a



So f,(x)= tan‘1x+§—a for x <tana and f,(x) =tan‘1x—§—a for x > tana
Sketch G1 G1 G1 (3)

Y = fa(x) = fp(x) =
(E—a)—(g—ﬁ)=8—afor x <tana
(—E—a)—(z—ﬁ):B—oc—n for tana < x < tanf
and (—%—a)—(—%—ﬁ)z fB—oa for x>tanf
Sketch G1 G1 G1 (3)

(i) g(x) = tanh~1(sinx) — sinh~!(tan x)

1 1
"(x) = —————cosx ————sec?x
g' ) 1—sin%x V1 +tan? x
M1 A1 Al
cosx sec’x sec? x
= v = secx — = 2secx
cos?x |secx]| —secx
M1 *Al (5)

as required, for secx < 0, i.e. for % <x< 37”
(For secx >0,g (x) =0)

Sketch G1 G1 G1 G1 (4)



elf 4 ei®

2=00 _ gip

cosf +isinf +cosp +ising

"~ cosf +isinf —cosg —ising

M1

ZCOSQZ(p c059;¢+2isin6;¢cosgg(p

.0+ . 0—0¢ . O+¢ . 80—
—2sin 5 Sin— + 2icos 5 Sin—

M1A1A1l

— @ (cose+(p+isin9-|2_(p)

2
N
sin— )

\]
aQ
o
%]
N

as required.

Alternatively,

eld + el ei( 2

o0 _ olp ei(e—w) } e_i(e—(p) 2 sin 2 ; ) 2 2

0
2 cos 5

Z =

M1 M1 Al Al *A1 (5)

0—¢
= t
2] |C° 2|
M1 A1l
largz| = —
argz| =

T 3
[or argz = S or 7]
M1 A1 (4)
(i) Let a=¢e® and b=e# M1 then x=a+b=e®+e# and AB=b—a =ef —¢ei®
el® 4 gif

X
argx —argAB = argE = argr

eioc

so using (i), |argx —argAB| = % A1l and thus OX and AB are perpendicular, since x =a+b # 0
and a # b as A and B are distinct. E1(3)



Alternative:- 0,a,a + b, b define a rhombus OAXB as |a| = |b| = 1. Diagonals of a rhombus are
perpendicular (and bisect one another).

(i) h=a+b+cso AH=a+b+c—a=b+c and BC =c — b andthus

AH_b+c
BC c¢c—b
B1
as c—b=#0
From (ii),
| AH|_TL’
8Bl T2

so BC is perpendicular to AH E1

unless b+ c =0 Elinwhichcase h =a E1(4)

(ivyp=a+b+c q=b+c+d r=c+d+a s=d+a+b

The midpoint of AQ is % = Stbtctd and so by its symmetry it is also the midpoint of BR, CS, and

2
DP, B1E1

and thus ABCD is transformed to PQRS by a rotation of m radians about midpoint of AQ. E1 B1 (4)

Alternatively, ABCD is transformed to PQRS by an enlargement scale factor -1, centre of
enlargement midpoint of AQ.



8. (i) Suppose xj = 2 + 4%~1(a — 2) for some particular integer k (and this is positive as a > 2)
El
Then Xppq = x> —22=2[2+ 45 (a—-2)1? -2 =4+4%a—-2)+4?¢2(a-2)? -2
=2+ 4k(a —2) + 4%¢~2(a — 2)?
>2+4%(a-2)
M1 A1l
which is the required result for kK + 1.
Forn=1,2+4"1(a—-2)=2+a—2=a sointhiscase, x, =2+ 4" 1(a — 2) B1and thus
by induction x,, = 2 + 4" 1(a — 2) for positive integer n. E1 (5)
(i) If |xg] <2,then 0 < |x|? <4,50 =2 < |x;|? —2<2,thatis =2 < x4 < 2. M1A1
If la]| <2, |x;] <2 and thus by induction —2 < x,, < 2, thatis x, » o E1
Whether a = +a , x, would equal the same value, namely a? — 2. E1

So to consider |al = 2, we only need consider a > 2 to discuss the behaviour of all terms after the
first. Therefore, from part (i), we know x,, = 2 + 4" 1(|a| — 2) forn = 2, and thus x,, = o as
n — o ; B1 hence we have shown x,, = © as n - oo ifandonlyif [a| = 2. (5)
(iii)
Ax1Xy o Xp
Ve =———
Xk+1

2
AXyXg X1 Xgt1

YVk+1 = Yk

Xk+2 Xk+2

M1

Suppose that

VX2 — 4

Yk =
Xk+1

for some positive integer k, E1 then

2/ 2 / 2
Xier1" VX1 =4 Xpg1y/Xp41” — 4

Xk+2 Xk+1 Xk+2

_ 2 _ _ 24— —
AS Xprz = Xpp1® = 2, X1 = [Xpaz + 2, and X2 — 4= - 2,

and thus,

YVk+1 =

2
_ VX2 + 24X = 2 _ VXpe2? — 4
Vik+1 = =
Xke+2 Xk+2

M1 A1l

which is the required result for k + 1.



and also we wish to have

then Ax; = \/x,2 — 4 ,thatis A%x;> = x,2 —4,andas x; =a, x, =x;°—2=a%—-2

o)
A2a’> =(a?>—-2)>—4=a*—4a?, A2 =a%> -4 ,andthus a =VAZ+ 4, as a # 0 nor
—VA? + 4 because a > 2. A1E1

So as the result is true for y; , and we have shown it to be true for y, ., if it is true for y, , it is true

by induction for all positive integer n that
v xn+12 —4

Xn+1

E1 (8)

Yn =

As a > 2 from (ii) x,, & o as n = co M1 and thus using result just proved, y,, > 1 as n = oo,
i.e. the sequence converges. *Al (2)



9.

Using the sine rule, from triangle PQR

PR PQ
sin@ sin(%"— )
M1 A1
From triangle PQC
PQ _ a—x
sin% - sin (2?” - 9)
Al
From triangle PBR
PR x

T G
sin sSmg

Al

Eliminating PR and PQ between these three equations

T 21 21 T
x sin—sin (— — go) sin (— — 9) = sin¢ sinf (a — x) sin§

3 3 3
M1 A1l

Hence

V3 1 V3 1 .

x| —=cosgp+—-sing ||—cosf +—=sinf | = (a—x)sing sind

2 2 2 2

giving
(\/§ coty + 1)(\/§ cotd + l)x =4(a—x)

as required. M1 *A1l (8)

If the ball has speed v; moving from P to Q, speed v, moving from Q to R, and speed v3 moving
from R to P,

then CLM at Q parallel to CA gives v, cos (%ﬂ - 9) =7, cosg and NELI perpendicular to CA gives
ev; sin (%ﬂ - 0) =, sin% , and dividing these gives e tan (2?” - 6) = tang
M1 A1l
and similarly,
CLM at R parallel to AB gives v, cos% = vz cos @ and NELI perpendicular to AB gives
ev, sing = v3 sin ¢ , and dividing these gives e tan% = tang . Al

—V/3-tané@
1—/3tan @

2?" = /3 M1 which simplifies to

etan( - 9) = tan% yields e



e(\/§ + tan 6) =3 (\/§tan9 — 1) ,orinturn, (3 —e)tan8 =+/3(1 +e) andso
(3-¢e)
V3(1+e)

cotf =

i i _ 1
etan- = tang yields cotp = o Al

Substituting these two expressions into the first result of the question,

1 (3—¢e)
<E+1><(1+e) +1>x=4(a—x)

M1
This simplifies to
1+e 4
X ——=4(a—x
e 1+e ( )
that is
x=e(a—x)
o)
ae
X =
1+e
as required. *Al (8)

To continue the motion at P, then similarly to before, the third impact gives e tan (%ﬂ - go) = tand

M1

So

—/3—tang  V3(e+1)
=e

1—+/3tang 3e—1

tan@ = e

and thus, using the previously found result for cot@

(3—¢e) _ 3e-1
V3(1+e) +3(e+ e
M1A1l

Thatis e(3—e) =3e—1, thatis e? =1 andas e >0, e =1 (and not -1) *B1 (4)



10. (i) Attimet, the point where the string is tangential to the cylinder, M1 say T is at
(acosB,asin® ), Al the piece of string that remains straight is of length b — aB, M1, the vector

—sin @ S .
dM1 A1l so the particle is at the point
cos 6 ) P P

(acos@® —(b—ab)sinf,asinf + (b —ab) cosB) . M1 AL (7)

representing the string is thus (b — af) (

x=—afsinf —(b—ab)fcosh +absinf = —(b — ab)b cos 6
y=afcos8 —(b—ab)fsinf —ab cosd = —(b — ab)f sin 6

M1 A1l

- 2 ) 2 )
Thus the speed is \/((b — ab)0 cos 9) + ((b — ab)0 sin 9) = (b —ab)0 asrequired. M1 A1 (4)

(ii) The only horizontal force on the particle is the tension in the string, which is perpendicular to the
velocity at any time, so kinetic energy is conserved. E1 Therefore,

%m ((b — ae)é)z = %mu2
M1

and so, as (b —aB)@ and u are both positive (b —ab)f =u *A1(3)

(iii) The tension in the string, using instantaneous circular motion, at time t is
mu?
(b —ab)

M1 A1

As (b — aB)@ = u, integrating with respect to t,
bo -2 et
———=ut+c
2

M1

butwhen t=0,0=0soc=0. M1 Al
2
Thus, b9—%=ut

i.e.

52 2b6 bz_b2 2ut_b2—2aut
a 'a® a a  a?

Alternatively, integrating (b — a0)8 = u with respect to't,

(- af)?

=ut+k
2a u

M1



2

When t =0,60 =0 so k=—§—a M1 Al

Thus, taking positive roots,

Hence, the tension is



11. (i)

n+1

PY=n)=Pm<X<n+1)= f Ae M dx =[- e-lx];‘+1 = —e M) 4 ¢

M1 M1
=(1—e*)en

as required. *Al (3)

(ii)

P(Z<Z)—Z:P(1‘<X<r+z)=§:fr —ﬂxdxzi[_e—/lx]:ﬂ
r=0r r=0

M1 M1
= Z(_ e~ Ar+x) + e—lr) — Z(l _ e—/’lz)e—/lr
r=0 r=0
M1 A1
1 1—e
_ _ Az —
=(1-e )1—(3"1 1—e 4

using sum of an infinite GP with magnitude of common ratio less than one.

M1 *A1l (6)
Az e~z
(i) As P(Z <z) = — T 7 f2(2) —_(1 3_1) 1_e—2 M1
so
1 1
ﬂ.e_/lz 1 1
_ _ -2 -2
E(Z)_fz e dZ—l_e_/1 [—Ze Z]0+fe Z dz
o 0
M1 M1
—21z11 -2
_ 1 e e ™’ 1 e—l_e_+1
1—e2 Al 1- e A2
Al
1 e~
A 1—e 2
or alternatively
1 (1-@+1e™?)
A 1—e4

Al (5)

—-An



(iv)
P(Y=nandz; <Z<z,)=Pn+z,<X<n+z)

n+22
— f 2 e—lx dx = [_ e—lx]n+22 - _ e—/’L(n+zz) + e—l(n+zl) — e—)ln(e—lzl _ e—)lzz)
Tl+Zl
n+z;
M1 Al

P(Y =nand z; < Z < z,) = e M (e™*%1 — ¢7122)

(1 _A) —in 1 — e_AZZ 1 — e—Azl
=(1—e e -
1—e2 1—e4

M1 Al

so Y and Z are independent. E1 (6)



1 5 1 5
P(Xlz=1)=6,P(X12=0)=E,P(X23=1)=6,P(X23=0)=g

If X,3 =1, then players 2 and 3 score the same as one another. In that case, X;, = 1 would mean
that player 1 also obtained that same score so P(X;, = 1|X,5 =1) = % =P(X, =1).

If X,3 =1, X;, =0 would mean that player 1 obtained a different score so
5
P(X12 = 0|X33 =1) = 6 = P(X1; =0)

If X,3 = 0, then players 2 and 3 score differently to one another. In that case, X;, = 1 would mean

that player 1 also obtained the same score as player 2 so P(X;, = 1|X,3 =0) = % =PX;, =1)

If X,3 =0, X;2 = 0 would mean that player 1 obtained a different score to player 2 so
5
P(X12 =0]X;3 =0) = 6 =P(X;, =0)

Hence X, isindependent of X,3;. M1 A1 (2)

Alternatively,

X2 Xo3

1 1 requires players 2 and 3 to both score same as player 1 so

1 1 1
P(Xlz =1andX23 = 1)= —=—><—=P(X12=1)><P(X23 =1)
36 6 6
1 0 requires player 2 to score the same as player as player 1, and player 3 score differently so

5 1 5
P(X12=1andX23=O): %=gxg:P(X12:1)XP(X23:0)

0 1 requires players 2 and 3 to score the same as one another, and player 1 score differently so

5 1

P(Xlz =OandX23 = 1) == _=_X_=P(X12 =0)XP(X23 == 1)
36 6 6

0 O requires both player 1 and 3 to score differently to player 2 so

25 5 5
P(X12=0andX23=0)= £=EXE=P(X12=0)XP(X23=0)

Hence X;, isindependent of X,;. M1ALl (2)

i<j

If total score is T, then

M1



SO

1 5 n(n— 1)
i<j i<j
M1 Al

1 5 1°
Var(T) = Var ZXU- = Z Var(X;;) = "C, Var(X;,) = "C, <12 X2+ 0% x c % )

i<j i<j
M1
_ 5n(n — 1)
72
A1 (5)

(ii)
Var(Yy+ Yo+ . +Y) =E(1 + Yo+ . +YV)D) —[E( + Y, + ... +Y)]?

=E(Y2+ 1% + o+ Y2+ 2 Y + 2V Y + o+ 2V, 1Y) — [E(Y) + E(Yy) + ... + E(Y)]?

<Z >+2E Z Z Y | — (04 0+ -+ 0)?

i=1 j=i+1

ZE(Y2)+ZZ Z E(Y:Y;)

i=1 j=i+1

M1 *A1 (2)
(iii)
P(Zyy=1) =3 x - =—
2 6 12
If Z,3 = 1 then player 2 has rolled an even score and player 3 has scored the same so, in this case,

for Z;, = 1, require player 1 to roll the score that player hasso P(Z;, = 1|Z,5 =1) = %.

Therefore, P(Z,, = 1) # P(Z,, = 1|Z,3 = 1) and thus Z;, and Z,5 are not independent.

Alternatively,
P(Z,=1)== ,P(Zyz=1) ==

ForZi; = 1and Z,3 = 1 we require all three players to score the same even number so

P(Ziy=landZy=1) = oxixic Lt o o bz, =) xPZn=1)
= = X X—=o— F-—X-— = =1) x =
12 = 2 ana 423 = 6767672 T 12712 12 23

and thus they are not independent. M1 A1l (2)
Using part (ii), letY; = Zy,, letY, = Zi3, .. let Vi = Zy_1yn

nn-1)

(and with m = "C, = >

).



1 1 5 1
P(Z1z =) ==, P(Z1y =~ ==, P(Z1=0) == so E(Z1p) =0 and E(Z,*) ==

2 ’
likewise for all other Z (Y!). B1 B1

<j

If total score is U, then

SO

E(U)=E ZZU- = ZE(ZL-]-) =0

6

i<j i<j
B1
which means we can apply the result of (ii).
If Z,, =1 then Z;z=1o0r Z;3=0
If Z;, =—1 then Z;3=—1or Z;3=0
Otherwise Z;, =0
S0 E(Z12713) = 1X 1X -+ —1X—1X - == M1Al
So
Var(U) = —n(nz_ D X % +2 xnx "¢, x 3_16 = n(n1; D) + n(n - 13)6(n —2)
M1 M1 A1l
nn-1) nn—1Dn+1) n@n®-1)

=T(3+(n—2))=

36 36
*A1 (9)

and



